姓名
| 马丽 | 职称 | 副教授 |
学位 | 博士 | 电子邮箱 | 2751850840@qq.com |
研究方向
| 微分方程定性理论、分岔理论 | 现任职务 | 无 |
学术论著 | [1] Li Ma(一作) ,Shangjiang *. Global dynamics of a diffusive Lotka-Volterra competition model with stage-structure [J]. Journal of Dynamical and Differential Equations,(2023), https://doi.org/ 10.1007/s 10884-023-10306-x. (数学 T2期刊,SCI). [2] Li Ma(一作) ,De Tang*. A diffusive-advection predator-prey model with protection zone [J]. Journal of Differential Equations, (2023), 375: 304-347.(数学 T2期刊,SCI二区Top). [3] Li Ma(一作通讯),Huatao Wang(指导硕士生),Jianping Gao.Dynamics of two-species Holling type-II predator-prey system with cross-diffusion[J],Journal of Differential Equations, (2023)(365): 591-365. (数学 T2期刊,SCI二区Top). [4] Li Ma(一作);Shangjiang Guo*; Positive solutions in the competitive Lotka-Volterra reaction- diffusion model with advection terms[J], Proceedings of the American Mathematical Society, 149 (7), (2021), 3013–3019.( 数学 T2 类期刊,SCI三区) [5] Li Ma(一作),De Tang*, Evolution of dispersal in advective homogeneous environments[J], Discrete Contin. Dyn. Syst. Ser. A , 40(10),(2020), 10.3934/dcds. 2020247 (T2期刊,SCI三区). [6] Shangjiang Guo, Li Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition[J],Journal of Nonlinear Science, 26 (2016): 545-580 (数学T2 期刊,SCI 二区) [7] Li Ma( 一作 ), Shangjiang Guo*, Bifurcation and stability of a two-species reaction- diffusion- advection competition model[J]. Nonlinear Analysis: Real World Applications, 59 (2021) 103241. (高被引论文,T3期刊,SCI二区). [8] Genjiao Zhou, Li Ma(通讯), Yin Wang, Population dynamics in a reaction-diffusion- advection predator-prey model with Beddington-Deangelis functional response[J]. Nonlinear Analysis: Real World Applications,(2024) 104059 (数学 T3期刊,SCI二区). [9] Genjiao Zhou, Li Ma(通讯),Global dynamics of a diffusive competitiveLotka–Volterra model with advection term and more general nonlinear boundary condition[J], Advances in Continuous and Discrete Models,10.1186/s13662-024-03815-6, 2024.SCI二区Top). [10] Li Ma(一作),Huatao Wang(指导硕士生), Dong Li*,Steady states of a diffusive Lotka-Volterra system with fear effects[J], Zeitschrift Für Angewandte Mathematik und Physik, 2023,106. (数学 T3期刊,SCI三区). [11] Huatao Wang(指导硕士生), Yan Zhang, Li Ma, Bifurcation and stability of a diffusive predator–prey model with the fear effect and time delay[J],Chaos, 33(7),2023. (数学 T2期刊,SCI二区). [12] Li Ma(一作) , Jianping Gao, Dong Li, Wenyan Lian D. Dynamics of a delayed Lotka–Volterra competition model with directed dispersal[J]. Nonlinear Analysis: Real World Applications, 2023, 71: 103830. (数学 T3期刊,SCI二区). [13] Jianping Gao, Shangjiang Guo, Li Ma, Global existence and spatio-temporal pattern formation of a nutrient-microorganism model with nutrient-taxis in the sediment[J], Nonlinear Dynamics, 2022, 108(4): 4207-4229. (工程技术类 T1期刊,SCI二区). [14] Li Ma(一作); Dan Wei*, Hopf bifurcation of a delayed reaction–diffusion model with advection term[J]. Nonlinear Analysis: Theory Method and Applications,212 (2021) 112455.( 数学 T3 类期刊,SCI二区Top). [15] Li Ma(一作); Zhaosheng Feng*; Stability and Bifurcation in A Two-Species Reaction- Diffusion-Advection Competition Model with Time Delay[J].Nonlinear Analysis: Real World Applications, 61 (2021) 103327. (T3期刊,SCI二区). [16] Li Ma(一作); Jianping Gao; Youquan Luo; Wenzhen Gan, Existence of the positive steady states of a reaction-diffusion-advection competition model[J]. Applied Mathematics Letters, 119 (2) (2021) 107205.(T3期刊,SCI一区Top). [17] Li Ma(一作), shangjiang Guo*, Bifurcation and stability of a two-species diffusive Lotka-Volterra model[J], Comm. Pure Appl. Anal. 19.3 (2020): 1205-1232. (T3期刊,SCI三区) [18] Li Ma(一作 通讯)*, Youquan Luo, Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms[J], Discrete Contin. Dyn. Syst. Ser. B 25(7), (2020) : 2555-2582.(T3期刊,SCI三区). [19] Li Ma(一作通讯)*, Xianhua Xie, Bifurcation analysis of coexistent state in a delayed two-species predator-prey model[J], Applicable Analysis, 99(7) (2020): 1295-1217.(SCI三区). [20] Li Ma(一作), De Tang*, Existence and stability of stationary states of a reaction- diffusion- advection model for two competing species, International Journal of Bifurcation and Chaos[J], 30(5), (2020):2050065.(T3期刊,SCI二区). [21] Li Ma(一作通讯)*, Youquan Luo and Shiyu Li, Bifurcation analysis of a two-species diffusive model[J], Applied Mathematics Letters, 96 (2019): 236-242(T3期刊,SCI一区Top). [22] Li Ma(独作通讯 )*, Existence of the solutions of a reaction cross-diffusion model for two species[J], Applied Mathematics Letters, 79 (2018): 118-122(T3期刊,SCI一区Top). [23] De Tang, Li Ma( 通讯 )*, Existence and uniqueness of a Lotka–Volterra reaction–diffusion model with advection term[J], Applied Mathematics Letters, 86(2018): 83-88(T3期刊,SCI一区Top). [24] Li Ma(一作), Shangjiang Guo*, Ting Chen, Dynamics of a Nonlocal Dispersal Model with a Nonlocal Reaction Term[J], International Journal of Bifurcation and Chaos, 28(2018): 1850033(T3期刊,SCI二区). [25] De Tang*, Li Ma, Dynamical behavior of a general reaction–diffusion–advection model for two competing species[J], Computers and Mathematics with Applications, 75(2018): 1128-1142(SCI二区Top). [26] Li Ma(一作), Shangjiang Guo*, Stability and bifurcation in a diffusive Lotka-Volterra system with delay[J], Computers and Mathematics with Applications, 72(2016):147-177(SCI二区Top). [27] Li Ma(一作), Fan Dashan and Wu Huoxiong*. Lp bounds for singular integrals with rough kernels on product domains[J]. Acta Mathematica Sinica, English Series, 2012, 28(1): 133-144.(数学类T1期刊,SCI一区). [28] 马丽(一作通讯)等. 高职院校“大类招生、分类培养”面临的困难及应对措施,《西部素质教育》,2024, (7). [29] 马丽等(一作通讯), 一类积分算子的有界性质, 赣南师范学院学报, 2013, 23(06): 1-2. [30] 谢显华;肖新元;许绍元;马丽, 带粗糙核的多重Marcinkiewicz积分算子的L~p有界性数学物理学报,2012, 16(05): 914-927. (中文重点核心). [31] 马丽等(一作),沿旋转曲面单参数Marcinkiewicz积分算子的L~p有界性,江西师范大学学报,2011,35(4): 362-365.(中文核心). [32] 马丽等(一作),一类特殊算子的有界性,赣南师范学院学报, 2010, 25(03): 1-2. [33] Li Ma*(一作通讯), Wang Weihong. A note of a rough singular integral operator[J]. J Math Study, 2008, 41: 287-294. | ||
科研项目 | (1) 微分方程理论与应用创新团队,2023KCXTD063,广东省教育厅重点科研平台和项目--创新团队项目(自然科学),2023/10-2026/09, 主持在研 (2) 几类带有对流和时滞的空间种群生态模型的动力学行为研究, 国家自然科学基金项目,主持 (3) 具有时空结构和时滞的随机扩散和非局部扩散方程的动力学行为研究,国家自然科学基金青年项目,主持已结题 (4) 带有时滞的若干两物种反应扩散模型的相关动力学行为研究,20202BAB211003,江西省自然科学基金,2020/01-2022/12, 主持已结题 (5) 基几类反应扩散捕食系统的Hopf 分支和稳态解研究,GJJ170844,江西省教育厅科技项目,2018/01-2018/12,主持已结题 (6) 一类反应扩散模型的动力学研究,江西省数值模拟与仿真技术重点实验室项目,002,2017/01-2019/12,主持已结题 (7) 几类不同的反应扩散方程的动力学研究,CX2016B074,湖南省科技厅研究生科研创新项目,2016/10-2018/5,主持已结题 (8) 反应扩散方程的趋化效应和非局部效应,GJJ201404,江西省教育厅科技项目,2021/01- 2023/12,3万,主研 (9) 自相似集与算子迭代动力学的若干理论及其应用,10961003,国家自然科学基金项目, 2010/01-2012/12,主研,已结题 (10) 具有互惠捕获的捕食食饵模型的稳定性与斑图分析,GJJ2101205,江西省教育厅科技项目,2023/01-2025/12,主研 | ||
主讲课程 | 《数学分析》、《时滞微分方程的分支理论及其应用》、《高等数学》、《考研数学》、《微积分》、《线性代数》、《离散数学》等 | ||
工作经历 | 2010.10-2014.08 2018.07-2019.09 赣南师范大学讲师 2019.10-至今 赣南师范大学 广东科学职业学院 广东财经大学 副教授 | ||
访学经历 | 无 | ||
学术与社会兼职 | [1] 担任美国数学学会《数学评论》(Mathematical Reviews)评论员 [2] 《西部素质教育》期刊编委 | ||
个人荣誉 | [1]多次荣获大学生数学竞赛和数学建模竞赛优秀指导教师荣誉 [2]荣获“2016 年度湖南大学优秀博士研究生校长奖学金” [3]荣获“2017 年度国家奖学金” [4]荣获“2017 年度湖南大学优秀博士研究生” [5]荣获“2018 年度湖南大学优秀博士毕业生” [6]荣获2010年度江西省教学成果奖荣誉1项(第3) [7]荣获2023年度第五届全国高校混合式教学设计创新大赛“设计之星”荣誉称号(排名第3) |