×

【学术讲座-广州】华中师范大学黄继才教授、中南大学陈和柏教授(珠韵论坛第十九期)

来源:统计与数学学院网站发布时间:2024-11-07

主讲人:黄继才教授

报告题目:Dynamics of several modified Rosenzweig-MacArthur equations in constant and changing environments

时间:2024118日(周五)15:00-18:00 

地点:立德楼 501

 

摘要:In this talk, we study dynamics of the modified Rosenzweig-MacArthur equation in constant and changing environments. We first provide a more easily verifiable classification to determine the types and codimension of nilpotent singularities in a general planar system. Second, by using some algebraic and symbolic computation methods, we show that the highest codimension of a nilpotent focus is 4 and the modified RM equation can exhibit nilpotent focus bifurcation of codimension 4. Finally, we give a brief introduction of three other modified Rosenzweig-MacArthur equations. It is based on some joint work with Drs. Min Lu, Chuang Xiang and Professors Dongmei Xiao, Shigui Ruan and Hao Wang.

 

个人简介:黄继才,华中师范大学教授、博士生导师。主要从事常微分方程定性理论、分支理论及其应用研究。在J. Differ. Equ.J.Dyn.Differ.Equ.SIAM J Appl. Math.SIAM J. Appl. Dyn. Syst.J. Math. Biol.SAPMBMB 等期刊发表学术论文五十余篇,其中发表在SIADS(2019) 的文章被美国工业与应用数学学会在《SIAM News》专文报道,并被选为该刊Featured Article。主持国家自然科学基金5项,参与国家自然科学基金重点项目1项,曾获湖北省自然科学奖三等奖。

 

 

主讲人:陈和柏教授

报告题目:Some studies of continuous planar piecewise linear differential systems with three zones

时间:2024118日(周五)15:00-18:00 

地点:立德楼 501

 

摘要:This talk focuses on the global dynamics of continuous planar piecewise linear differential systems with three zones. We provide the complete bifurcation diagram and all global phase portraits in the Poincaré disc under a variety of specific parameter conditions. This analysis is applicable to a second-order memristor oscillator and the piecewise linear FitzHugh-Nagumo system, and so on.

 

个人简介:陈和柏,博士,中南大学数学与统计学院教授、博士生导师,现任应用数学系主任,分析数学及其应用省重点实验室副主任。 从事微分方程与动力系统的教学和研究, 主要研究光滑及非光滑微分方程的定性理论与分岔理论。在Adv. Math.Math. Ann.NonlinearityJ. Diff. Equ.J. Nonl. Sci.Phy. DSIAM J. Math. Anal.Anna. Matem. Pura Appl.等国际重要期刊发表高水平成果。获得国家优青项目资助,主持了相关的国家面上和青年基金。2017年评为福州大学旗山学者,2019年评为福建省高层次引进人才,2023年入选湖南省“三尖”创新人才工程。