姓名 | 马丽 | 职称 | 教授 |
|
学位 | 博士研究生 | 研究方向 | 微分方程分岔理论及其应用 | |
个人简介 | 申请人是广东省教育厅重点科研项目--“微分方程理论与应用”创新团队项目的负责人,广东财经大学南岭学者“卓越人才”,已经主持国家自然科学基金 2项,主持省自然科学基金以及省科技计划项目、省重点教改项目多项以及主持多项校级自然科学基金、教改项目,参与了多项国家、省和校级自然科学基金。这些为本项目的顺利完成奠定了基础。2011 年至今,在 J.Differential Equations,J.Dynamics and Differential Equations, J.Nonlinear Science,Physcia D, Chaos, Discrete and Continuous Dynamical System, Proceedings of the American Mathematical Society, Communications on Pure and Applied Analysis,Z.Angew.Math.Phys., 中国科学(数学)、数学学报(英文版)、数学物理学报 等中英文期刊上发表论文近40 篇(主要论文列表详见科研论文)。 | |||
主讲课程 | 《数学分析》、《时滞微分方程的分支理论及其应用》、《高等数学》、《考研数学》、《微积分》、《线性代数》、《离散数学》等 | |||
科研成果 | [1] 微分方程理论与应用创新团队,广东省教育厅创新团队项目(自然科学),主持 [2] 新乡村振兴背景下污染物对广东城乡河流生态系统的影响机制与策略,广东省教育厅重点科研项目(自然科学),主持 [3] 时滞微分方程动力学理论与应用研究, 广东省自然科学基金面上项目,主持 [4]几类带有对流和时滞的空间种群生态模型的动力学行为研究, 12161003, 国家自然科学基金项目, 主持 [5]具有时空结构和时滞的随机扩散和非局部扩散方程的动力学行为研究,11801089, 国家自然科学基金青年项目, 主持 [6]带有时滞的若干两物种反应扩散模型的相关动力学行为研究,20202BAB211003,江西省自然科学基金,主持 [7]基几类反应扩散捕食系统的Hopf 分支和稳态解研究,GJJ170844,江西省教育厅科技项目,2018/01-2018/12,主持 [8]一类反应扩散模型的动力学研究,江西省数值模拟与仿真技术重点实验室项目,002,2017/01-2019/12,主持 [9]几类不同的反应扩散方程的动力学研究,CX2016B074,湖南省科技厅研究生科研创新项目,2016/10-2018/5,主持 [10]自相似集与算子迭代动力学的若干理论及其应用,10961003,国家自然科学基金项目, 2010/01-2012/12,主研 | |||
教研成果 | [1]《基于OBE理念下高等数学“课程思政”教学改革研究》,JXJG-22-14-1,江西省重点教改项目,2022.12-2025.12 [2] 《新文科背景下数学公共课赋能专业课的教学改革研究》,广东财经大学教改项目,2024.11(主持在研) [3] 主编《课程思政建设方法与实践》专著,2025.10,广东高等教育出版 [4] 荣获2023年度“第五届全国高校混合式教学设计创新大赛”全国二等奖(排名第3) [5] 指导学生参加2023年度全国大学生数学建模竞赛国家二等奖,荣获优秀指导教师荣誉称号 [6] 《高等数学》课程教学改革与全国大学生数学竞赛整合研究,省级项目, JXJG-2013-582,江西省重点教改项目,2011.11-2013.2.(主研) [7] 参与立项《微积分》江西省省级优质课程申报及录制,2017 [8] 荣获2012年赣南师范大学青年教师教学竞赛一等奖一项 [9] 多次荣获全国大学生数学竞赛优秀指导教师 [10] 参与编写十一五国家规划教材《微积分》一部,2019.(多次印刷) [11] 荣获“2023年广东科学技术职业学院教学成果奖”一等奖(排名第2) [12] 第一作者发表教研论文2篇 2008 年-2011 年,以及 2019 年-2022年一直担任班主任工作,积极开展各种有意义的班级活动 | |||
学术论文 | [1] 马丽,卫丹.具记忆时滞扩散模型在对流环境中的分支问题[J]. 中国科学(数学),2026,1-22. [2] Li Ma, De Tang, Dynamical behavior of a three-species diffusion-advection predator-prey-mutualist model in heterogeneous environments[J]. Journal of Differential Equations, 2025, 424: 330-380. [3] Li Ma ,De Tang*. A diffusive-advection predator-prey model with protection zone[J]. Journal of Differential Equations, 2023, 375: 304-347. [4] Li Ma*, Huatao Wang(硕士生),Jianping Gao.Dynamics of two-species Holling type-II predator-prey system with cross-diffusion[J], Journal of Differential Equations, 2023(365): 591-365. [5] Shangjiang Guo*, Li Ma, Stability and bifurcation in a delayed reaction- diffusion equation with Dirichlet boundary condition[J], Journal of Nonlinear Science, 2016, 26: 545-580. [6] Li Ma, De Tang, Lulu Tong*, Dynamics of a diffusive two-predator-one-prey model in advective heterogeneous environments[J]. Physica D: Nonlinear Phenomena, 2025: 134867. [7] Li Ma, Shangjiang*, Global dynamics of a diffusive Lotka-Volterra competi- tion model with stage-structure[J]. Journal of Dynamical and Differential Equations, 2025, 37(1): 629-662. [8] Li Ma, De Tang*, Global dynamics of population-toxicant models with non- local dispersals[J]. Advances in Nonlinear Analysis, 2025, 14(1): 20250107. [9] Shiyu Li, Ke Liu, Li Ma*, et al., Eigenvalue problem with indefinite weight function and advection term and its applications[J]. Proceedings of the American Mathematical Society, 2025. [10] Li Ma, Dan Wei*, X.H. Xie, Bifurcation analysis for a spatial memory diffusive model incorporating advection term and nonlocal maturation delay[J]. Journal of Mathematical Analysis and Applications, 2026: 130072. [11] Li Ma, Haihua Liang*, Huatao Wang, Dynamics of two species predator-prey model with spatially nonhomogeneous diffusion strategy[J]. Journal of Mathematical Analysis and Applications, 2025, 548(2): 129412. [12] Genjiao Zhou, Li Ma*, Yin Wang, Population dynamics in a reaction-diffusion -advection predator-prey model with Beddington-Deangelis functional response [J]. Nonlinear Analysis: Real World Applications, 2024 104059. [13] Genjiao Zhou, Li Ma*, Global dynamics of a diffusive competitive Lotka– Volterra model with advection term and more general nonlinear boundary condition[J], Advances in Continuous and Discrete Models, 2024, (1): 20. [14] Li Ma*, Genjiao Zhou. The Diffusive Lotka–Volterra Competitive Model with Advection Term: Exclusion, Coexistence and Multiplicity. International Journal of Bifurcation and Chaos, 2024: 2450189. [15] Li Ma, Shangjiang Guo*; Positive solutions in the competitive Lotka- Volterra reaction- diffusion model with advection terms[J], Proceedings of the American Mathematical Society, 2021,149 (7): 3013–3019. [16] Li Ma, De Tang*, Evolution of dispersal in advective homogeneous environ- ments[J], Discrete Contin. Dyn. Syst. Ser. A, 2020, 40(10),10.3934/dcds. 2020247. [17] Li Ma,Huatao Wang(硕士生), Dong Li*,Steady states of a diffusive Lotka- Volterra system with fear effects[J],Zeitschrift Für Angewandte Mathematik und Physik, 2023,106. [18] Huatao Wang(硕士生), Yan Zhang, Li Ma, Bifurcation and stability of a diffusive predator–prey model with the fear effect and time delay[J],Chaos, 2023, 33(7). [19] Li Ma , Jianping Gao, Dong Li, Wenyan Lian D. Dynamics of a delayed Lotka– Volterra competition model with directed dispersal[J]. Nonlinear Analysis: Real World Applications, 2023, 71: 103830. [20] Jianping Gao, Shangjiang Guo , Li Ma, Global existence and spatio-temporal pattern formation of a nutrient-microorganism model with nutrient-taxis in the sediment[J], Nonlinear Dynamics, 2022, 108(4): 4207-4229. [21] Li Ma, Shangjiang Guo*, Bifurcation and stability of a two-species reaction- diffusion-advection competition model[J]. Nonlinear Analysis: Real World Applications, 2021, 59: 103241. [22] Li Ma, Dan Wei*, Hopf bifurcation of a delayed reaction–diffusion model with advection term[J]. Nonlinear Analysis: Theory Method and Applications, 2021, 212: 112455. [23] Li Ma, Zhaosheng Feng*; Stability and bifurcation in a two-species reaction -diffusion-advection competition model with time delay[J]. Nonlinear Analysis: Real World Applications, 2021, 61: 103327. [24] Li Ma, Jianping Gao, Youquan Luo, et al., Existence of the positive steady states of a reaction-diffusion-advection competition model[J]. Applied Mathematics Letters, 2021, 119 (2): 107205. [25] Li Ma, shangjiang Guo*, Bifurcation and stability of a two-species diffusive Lotka-Volterra model[J], Comm. Pure Appl. Anal., 2020, 19.3: 1205-1232. [26] Li Ma*, Youquan Luo, Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms[J], Discrete Contin. Dyn. Syst. Ser. B, 2020, 25(7): 2555-2582. [27] Li Ma*, Xianhua Xie, Bifurcation analysis of coexistence in a delayed two- species predator-prey model[J], Applicable Analysis, 2020,99(7): 1295-1217. [28] Li Ma, De Tang*, Existence and stability of stationary states of a reaction- diffusion-advection model for two competing species, International Journal of Bifurcation and Chaos[J], 2020, 30(5): 2050065. [29] Li Ma*, Youquan Luo and Shiyu Li, Bifurcation analysis of a two-species diffusive model[J], Applied Mathematics Letters, 96 (2019): 236-242. [24] Li Ma(独作通讯 )*, Existence of the solutions of a reaction cross-diffusion model for two species[J], Applied Mathematics Letters, 79 (2018): 118-122.(T3期刊,SCI一区Top) [25] De Tang, Li Ma( 通讯 )*, Existence and uniqueness of a Lotka–Volterra reaction–diffusion model with advection term[J], Applied Mathematics Letters, 86(2018): 83-88.(T3期刊,SCI一区Top) [26] Li Ma(一作), Shangjiang Guo*, Ting Chen, Dynamics of a Nonlocal Dispersal Model with a Nonlocal Reaction Term[J], International Journal of Bifurcation and Chaos, 28(2018): 1850033.(T3期刊,SCI二区) [27] De Tang*, Li Ma, Dynamical behavior of a general reaction–diffusion– advection model for two competing species[J], Computers and Mathematics with Applications, 75(2018): 1128-1142.(SCI二区Top) [28] Li Ma(一作), Shangjiang Guo*, Stability and bifurcation in a diffusive Lotka-Volterra system with delay[J], Computers and Mathematics with Applications, 72(2016):147-177.(SCI二区Top) [29] Li Ma(一作), Fan Dashan and Wu Huoxiong*. Lp bounds for singular integrals with rough kernels on product domains[J]. Acta Mathematica Sinica(数学学报,中国), English Series, 2012, 28(1): 133-144.(数学类T期刊) | |||
个人荣誉 | [1] 荣获2024年度广东财经大学南岭学者“卓越人才” [2] 多次荣获大学生数学竞赛和数学建模竞赛优秀指导教师荣誉 [3] 荣获“2016 年度湖南大学优秀博士研究生校长奖学金” [4] 荣获2023年广东科学技术职业学院教学质量优秀 [5] 荣获“2017 年度国家奖学金” [6] 荣获“2017 年度湖南大学优秀博士研究生” [7] 荣获“2018 年度湖南大学优秀博士毕业生” [8] 荣获2010年度江西省教学成果奖荣誉1项(第3) | |||
