×

蔡佳

教授

来源:统计与数学学院网站发布时间:2022-07-10

蔡佳,博士,教授,博士生导师200910月博士毕业于香港城市大学数学系,师从德国洪堡基金、国家杰青获得者、《Analysis & Applications》期刊总编、澳大利亚悉尼大学教授周定轩。2019年破格晋升为教授,同年12月入选广东省省级人才计划,担任国家自然科学基金评审专家,广东省自然科学基金评审专家,教育部科技管理系统入库专家湖北省科技厅项目评审专家,江苏省科技厅项目评审专家,黑龙江省科技厅项目评审专家。主持和承担国家自科(青年、面上)、国家社科重点项目、香港资助局科研项目,国家统计局重点项目,广东省自然科学基金,教育部人文社科,广州市科技计划等合计20余项,其中主持国家自然科学金3(已完成2)已在国内外著名期刊Applied and Computational Harmonic Analysis》,IEEE Transactions on Neural Networks and Learning Systems》,《Neural NetworksNeural Computation》,《Journal of Multivariate AnalysisEngineering Applications of Artificial Intelligence,《Cognitive Computation》,Neurocomputing《中国科学》(中英文版)以及计算机领域的IJCNNICONIPICANN, ICDM等著名会议发表(含已接收)SCIEI检索论文30

 

主要主持项目:

[1] 国家自然科学基金面上项目,项目编号:12271111基于深度神经网络的复杂图数据分析算法研究,在研,主持,20231-202612月。

[2] 广东省自然科学基金项目面上项目项目编号:2022A1515011726图卷积神经网络的理论研究及其应用在研,主持,20221-202412月。

[3] 广东省教育厅创新团队项目,项目编号:2020WCXTD011,智慧金融大数据分析团队,已结题,主持,20209-20238月。

[4] 广东省教育厅人工智能重大领域专项,项目编号:2019KZDZX1023,基于深度学习方法的金融数据分析研究,已结题,主持,20203-202212月。

[5] 国家自然科学基金面上项目,项目编号:11871167,面向大规模多视角数据的相关性研究及其应用,已结题,主持,20191-202212

[6] 国家自然科学基金青年项目,项目编号11401112,学习理论中的核典型相关分析及相关算法的研究和应用,已结题,主持。20151-201712月。

[7] 国家统计局重点项目,项目编号 2016LZ47,大数据背景下关于社交网络舆情监测的研究,3万,已结题,主持。201612-201812月。

[8] 广州市科技计划,项目编号201707010228,大数据背景下基于相关性分析的多媒体信息检索算法研究,20万,已结题,主持。20175-20205月。

[9] 广东省高校自然科学研究项目,项目编号:2013LYM0032,典型相关分析和系数正则化的理论研究及其应用,3万,已结题,主持。20141-20163月。

代表性论文:

[1] Kexin Lv, Jia Cai, Junyi Huo, Chao Shang, Xiaolin Huang* and Jie Yang*Sparse generalized canonical correlation analysis: distributed alternating iteration based approach. Neural Computation, 2024, 36 (7): 1380-1409 (一作为博士生,中国计算机学会B类期刊)

[2] Wenwen Ye, Jia Cai, Shengping Li*. A FDA-based multi-robot cooperation algorithm for multi-target searching in unknown environments. Complex & Intelligent Systems2024, 10, 7741-7764. (一作为博士生,中科院SCI二区)

[3] Ranhui Yan, Jia Cai*. Virtual Nodes based heterogeneous graph convolutional neural network for efficient long-range information aggregation. In Artificial Neural Networks and Machine Learning-ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17-20, 2024, Proceedings, Part V. Springer-Verlag, Berlin, Heidelberg, 217-231.

[4] Zhilong Xiong, Jia Cai*, Ranhui Yan, and Xiaolin Huang*. Noise perturbation based graph contrastive learning via flexible filters for node classification. 2024 International Joint Conference on Neural Networks (IJCNN). (EI,中国计算机学会C类会议)

[5] Jia Cai*Tianhua LuoZhilong Xiong, and Yi Tang. A novel multi-level image segmentation algorithm via random opposition learning based Aquila optimizer. International Journal of Wavelets, Multiresolution and Information Processing, Volume 21, No. 06,  2023, 文章编号:2350018 (中科院SCI四区)

[6] Ranhui Yan, Jia Cai*. An end-to-end dense connected heterogeneous graph convolutional neural network. 30th International Conference on Neural Information Processing (ICONIP 2023). (通讯作者,一作为学生中国计算机学会C类会议)

[7] Yuxiang Han, Hong Chen, Tieliang Gong, Jia Cai, Hao Den. Robust partially linear models for automatic structure discovery. Expert Systems With Applications, Volume 217, 1 May 2023, 文章编号:1195282023. (中科院SCI一区)

[8] Guanglong Xu, Zhensheng Hu, Jia Cai*. WAD-CMSN: Wasserstein distance based cross-modal semantic network for zero-shot sketch-based image retrieval. International Journal of Wavelets Multiresolution and Information Processing, Volume 21, Issue 2, 2023, 2250054. (通讯作者一作为学生,中科院SCI四区)

[9] Zhilong Xiong, Jia Cai*. Deep heterogeneous graph neural networks via

similarity regularization loss and hierarchical fusion. Workshop of IEEE International Conference on Data Mining ( ICDM 2022 workshop). (通讯作者一作为学生中国计算机学会B类会议)

[10] Zhilong Xiong, Jia Cai*. Self-attention based multi-scale graph convolutional networks. 29th International Conference on Neural Information Processing (ICONIP 2022). (通讯作者,一作为学生中国计算机学会C类会议)

[11] Jia Cai, Tianhua Luo, Guanglong Xu, Yi Tang. A novel biologically inspired approach for clustering and multilevel image thresholding: modified Harris hawks optimizer. Cognitive Computation, Volume 14, Issue 3, 2022, 955-969. (中科院SCI二区)

[12] Jia Cai, Junyi Huo. Sparse generalized canonical correlation analysis via linearized Bregman method. Communications on Pure & Applied Analysis, Volume 19, Issue 8, 2020, 3933-3945.(中科院SCI)

[13] Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net  regularization. Mathematical Foundations of Computing, Volume 3, Issue 4, 2020, 219-227. (中科院SCI四区)

[14] Jia Cai, Guanglong Xu, Wenwen Ye. Modified grey wolf optimizer based

maximum entropy clustering algorithm. 2020 International Joint Conference on Neural Networks (IJCNN 2020). (EI中国计算机学会C类会议)

[15] Jia Cai, Wei Dan, Xiaowei Zhang. ℓ0-based sparse canonical correlation analysis with application to cross-language document retrieval. Neurocomputing, Volume 329, 2019, 32-45. (中科院SCI)

[16] Jia Cai, Xiaolin Huang. Modified sparse linear discriminant analysis via

nonconvex penalties. IEEE Transactions on Neural Networks and Learning Systems, Volume 29, Issue 10 , 2018, 4957-4966. (中科院SCI一区)

[17] Jia Cai, Yi Tang. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval. Neural Networks, Volume 98, 2018, 178-191.(中科院SCI)

[18] Jia Cai, Hongwei Sun. Constrained ERM learning of canonical correlation

analysis: a least squares perspective. Neural Computation, Volume 29, Issue 10, 2017, 2825-2859. (中科院SCI)

[19] Jia Cai, Xiaolin Huang. Robust kernel canonical correlation analysis with applications to information retrieval. Engineering Applications of Artificial Intelligence, Volume 64, 2017, 33-42. (中科院SCI二区)

[20] Jia Cai, Hongwei Sun. Kernel-based conditional canonical correlation analysis via modified Tikhonov regularization. Applied and Computational Harmonic Analysis, Volume 41, 2016, 692-712. (中科院SCI一区)

[21] Jia Cai, Yi Tang, Jianjun Wang. Kernel canonical correlation analysis via

gradient descent. Neurocomputing, Volume 182, 2016, 322-331. (中科院SCI)

[22] Jia Cai, Daohong Xiang. Statistical consistency of coefficient-based conditional quantile regression. Journal of Multivariate Analysis, Volume 149, 2016, 1-12.(中科院SCI三区)

[23] Jia Cai. An operator approach to analysis of conditional kernel canonical

correlation. International Journal of Wavelets Multiresolution and Information

Processing, 2015,13: Article ID: 150024, 14 pages. (中科院SCI四区)

[24] Cheng Wang, Jia Cai*. Convergence analysis of coefficient-based regularization under moment incremental condition. International Journal of Wavelets, Multiresolution and Information Processing, Volume 12, Issue 1, 2014, 19 pages. (通讯作者中科院SCI四区)

[25] 蔡佳, 王承, 无界抽样情形下不定核的系数正则化回归。中国科学A, 43, 6, 2013, 613-624.

[26] Jia Cai. The distance between feature subspaces of kernel canonical correlation analysis. Mathematical and Computer Modelling, Volume 57, Issuses 3-4, 2013, 970-975. (中科院SCI二区)

[27] Jia Cai, Hongwei Sun. Convergence rate of kernel canonical correlation

analysis. Science in China, Series A: Mathematics, Volume 54, Issue 10, 2011, 2161-2170. (中国科学 A 辑英文版)

[28] Jia Cai, Hongyan Wang, Ding-Xuan Zhou. Gradient learning in a classification setting by gradient descent. Journal of Approximation Theory, Volume 161, 2009, 674-692.(中科院SCI