报告题目:Construction of Symmetric Orthogonal Designs with Deep Q-Network and Orthogonal Complementary Design
报告人: 彭小令 副教授
时间:2021年12月3日(周五)上午10:00-12:00
地点:腾讯会议 会议号:292 868 730
主办单位:统计与数学学院、人工智能与深度学习研究所
报告提纲:
Abstract : Construction of orthogonal designs (ODs) has received much attention over
the past decades, where previous work were originated from either mathematical
theory or algorithmic search. A new algorithm is proposed to construct
symmetric ODs. It is established on a well-designed framework of sequential
construction, combining the deep Q-network (DQN) and orthogonal complementary
design (OCD). The DQN-OCD algorithm shows its superiority by constructing
various non-isomorphic ODs in an efficient manner. In particular, the
constructions of symmetric ODs, including the saturated ODs L27(313), L28(227)
and non-saturated ODs L18(37), L36(313) are presented, where the performance
of DQN-OCD algorithm surpasses the others. Furthermore, a series of previously
unknown ODs in non-isomorphic subclasses of L28(227) and L36(313) are
constructed as new collections of ODs.
报告人简介:
彭小令 博士 北京师范大学-香港浸会大学联合国际学院 副教授
研究领域: 近期研究兴趣集中在不同类型的大数据分析及其应用,特别是变量选择方法在基因组学研究方面的应用。2014-2015年在UCLA访问期间开始合作研究适用于超高维数据的变量选择方法及其快速算法,并将其应用于挑选和疾病相关的基因或基因组群。
初审:郭影玲 复审 : 陈蔼祥 终审:黄辉